- SEt Theory Language
- Information technology: SETL (New York Uni.)
Универсальный русско-английский словарь. Академик.ру. 2011.
Универсальный русско-английский словарь. Академик.ру. 2011.
Set theory — This article is about the branch of mathematics. For musical set theory, see Set theory (music). A Venn diagram illustrating the intersection of two sets. Set theory is the branch of mathematics that studies sets, which are collections of objects … Wikipedia
set theory — the branch of mathematics that deals with relations between sets. [1940 45] * * * Branch of mathematics that deals with the properties of sets. It is most valuable as applied to other areas of mathematics, which borrow from and adapt its… … Universalium
Morse–Kelley set theory — In the foundation of mathematics, Morse–Kelley set theory (MK) or Kelley–Morse set theory (KM) is a first order axiomatic set theory that is closely related to von Neumann–Bernays–Gödel set theory (NBG). While von Neumann–Bernays–Gödel set theory … Wikipedia
Implementation of mathematics in set theory — This article examines the implementation of mathematical concepts in set theory. The implementation of a number of basic mathematical concepts is carried out in parallel in ZFC (the dominant set theory) and in NFU, the version of Quine s New… … Wikipedia
Paradoxes of set theory — This article contains a discussion of paradoxes of set theory. As with most mathematical paradoxes, they generally reveal surprising and counter intuitive mathematical results, rather than actual logical contradictions within modern axiomatic set … Wikipedia
Constructive set theory — is an approach to mathematical constructivism following the program of axiomatic set theory. That is, it uses the usual first order language of classical set theory, and although of course the logic is constructive, there is no explicit use of… … Wikipedia
Zermelo–Fraenkel set theory — Zermelo–Fraenkel set theory, with the axiom of choice, commonly abbreviated ZFC, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics.ZFC consists of a single primitive ontological notion, that of… … Wikipedia
Quasi-set theory — is a formal mathematical theory of collections of indistinguishable objects, mainly motivated by the assumption that certain objects treated in quantum physics are indistinguishable. Quasi set theory is closely related to, yet distinct from,… … Wikipedia
Naive set theory — This article is about the mathematical topic. For the book of the same name, see Naive Set Theory (book). Naive set theory is one of several theories of sets used in the discussion of the foundations of mathematics.[1] The informal content of… … Wikipedia
List of set theory topics — Logic portal Set theory portal … Wikipedia
Class (set theory) — In set theory and its applications throughout mathematics, a class is a collection of sets (or sometimes other mathematical objects) which can be unambiguously defined by a property that all its members share. The precise definition of class… … Wikipedia